
IS&T's 2000 PICS ConferenceIS&T's 2000 PICS ConferenceIS&T's 2000 PICS Conference Copyright 2000, IS&T
Architectural Design of Metadata for Images
James R. Milch and George E. Sotak Jr.

Eastman Kodak Company
Rochester, New York, USA
Abstract

Digital imaging on the Internet and on personal computers
has evolved into a very open system. Most imaging
workflows on the desktop involve hardware and software
from several different companies. The creation of industry
standards has resulted in a reduction in the number of image
file formats that users encounter. Device-to-device color
variation has been reduced by the introduction of sRGB as
an exchange color space. Still, desktop digital imaging is
difficult to use. It is now widely recognized that the user
experience can be improved by carrying non-imaging
information—image metadata—along with the pixel values.
However, existing infrastructure for image metadata
diminishes its utility. Many of the standard image file
formats support the storage of metadata, but their storage
mechanisms are simplistic and impose unnecessary
constraints on the metadata representation.

This paper examines the use of metadata in the most
common consumer and business workflows. From these
use cases, we extract the key requirements for the
representation of the metadata and the subsystems that
handle it. These cover issues such as the metadata carrier,
the metadata’s representation and semantics, metadata
retention, and metadata management. We then explain the
basic architecture of a system that meets these requirements.
This architecture is supported by a comparison between this
domain and other, better studied domains, such as
information exchange across heterogeneous databases and
the design of the World Wide Web. Our architecture does
not answer all the issues raised by the requirements, but it
provides a context in which to address them.

Introduction

The growth of digital photography is driven by three
technological forces: the development of inexpensive
digital cameras, the availability of inexpensive computing
power, and the growth of ubiquitous networking. If the first
force were the dominant one, digital photography would be
simple. Instead of capturing pictures with film and getting
optical prints, consumers would be capturing pictures with
CCD imagers and getting digital prints. That is not the case.
The real demand for digital photography comes from the
164
new things that consumers can do with digital images, no
matter how they were captured.

Digital images are information. They can be integrated
into information systems for storage, searching,
transmission, or analysis. Of course, in the end, they must
be viewed in soft copy or hard copy form to be enjoyed.
However, the opportunities for enjoyment can be greatly
increased by those information system functions.

The open systems we use today to capture, manage, and
use digital images have an important shortcoming. They
provide means to work with the image, but no means to
manage data about the image. This additional information,
called metadata, may describe objects in the scene, the state
of the camera at the moment of scene capture, the desires of
the photographer, or the purpose of the image. The
metadata may be used to improve the image quality of the
reproduction, help photographers to organize their image
collections, or simplify the overall picture workflow.

Several common image file formats support metadata.
For example, TIFF files and Exif files may contain
collections of tags that contain information about the image.
However, these formats and the tags defined for them were
designed to be used either in closed systems or in open
systems with constant human intervention. As we look at
using them in modern information systems, they have two
clear shortcomings. First, the data are organized in a rigid
and cumbersome manner. It is difficult to audit the tags in a
file for validity or add new tags on the fly. Second, the
meaning, usage, and interrelationships of the tags have not
been carefully specified. Every product uses the tags just a
little differently. This makes it very difficult to use the tags
reliably in automated processes, as part of an open system.

As we looked more closely at the design of an
architecture for photographic metadata, we realized that it
was not just a “plumbing problem”. There are some very
difficult issues to face. We also found that the problem is
closely linked with several other active research areas. In
particular, we found parallels in:
• Work done by the computer science community to

improve the design of the World Wide Web
• Work done by the bibliographic community to index

and organize objects in collections of many kinds
• Efforts to define the exchange of information and intent

between “intelligent agents”.
This paper will draw on experience in photography and

observation from these other domains to define a basic

IS&T's 2000 PICS ConferenceIS&T's 2000 PICS ConferenceIS&T's 2000 PICS Conference Copyright 2000, IS&T
architecture for photographic metadata and the software that
handles it. This architecture supports use of the metadata
both in a purely photographic environment and as part of the
larger information web. Some of this work was done in
support of a Digital Imaging Group (DIG) working team
that has been examining the use of metadata in photography
[1].

Metadata Requirements

The first step in understanding the requirements for
describing and handling metadata is to collect a series of
customer use cases. Each use case describes, in narrative
fashion, one particular photographic experience. It is
written from the customer’s point of view, but includes
interactions with equipment, software, and service
providers. We have written use cases that describe the
photographic needs of consumers and casual business users.
We did not study the needs of professional photographers or
publishers. Because of space limitations, we have omitted
example use cases from this paper.

 From these use cases, we have derived a set of
photographic metadata requirements. These requirements
apply not only to the metadata itself, but also to the software
layers that are responsible for managing the metadata. The
technology to satisfy some of the requirements comes from
Computer Science; other requirements deal more with
Imaging Science issues. We cannot list all of the
requirements here, but the must critical ones are presented.
The ** notation is explained in the following section.

Requirements on the representation of the metadata
• Provide interoperability across hardware platforms,

software environments, and usage domains **
• Provide ability to add new metadata items without a

central registration authority **
• Support validation of the syntax and content of the

metadata
• Support hierarchical grouping of, and meaningful

relationships between, metadata items

Requirements on the means used to store a collection of
metadata in an image file with pixel data
• Support the definition of blocks of metadata
• Support compression, encryption, and priority selection

of metadata by block
• Support rapid access to specific blocks of metadata

Requirements on the software that manages the
metadata
• Provide interfaces that are independent of storage

format, recognizing that there will be more than one
• Create an effective in-memory representation of the

metadata with methods to use it
• Implement support for the metadata representation and

storage features noted above
265
• Provide the ability for an application to copy all the
metadata from one file to another, based on the syntax
of the metadata.

• Provide means to automatically update the metadata in
response to changes made in the image, keeping the two
of them synchronized. **

• Extract useful metadata about the scene and the quality
of the image from the image data itself. **

Key challenges
Some of the requirements given above can be

implemented using careful design and judicious selection of
known technologies. Others present real scientific
challenges and cannot be completely satisfied by current
technology. We believe that the four requirements marked
above with “**” should be the subject of further research.

Lessons from Other Fields of Research

If the metadata associated with images is used only as an
occasional hint for a human user, the precise way in which it
is defined and stored is not very important. However, the
real potential for making imaging easier with metadata
depends on software that can use metadata to make
“intelligent” decisions about the content or usage of images.
Furthermore, today’s business models require a dynamic
extensible, architecture. These two facts call for careful
consideration of the definition, storage, and syntax of
metadata.

The problem of metadata architecture for pictures is
closely linked with several other active research areas.
Libraries, museums, and other collections store a wide
variety of artifacts, including books, pictures, maps, and
fossils. The bibliographic community is facing the
challenge of converting the “card catalog” information on
these objects into a universally-searchable, interoperable
form [2]. From their point of view, pictures are another
kind of artifact. This research community has made
particular contributions to understanding how to describe
the relationships between objects [3].

The term “metadata” has been applied in the database-
design community to describe information somewhat
different than our image metadata. Here, metadata
describes the database structures created to store, define,
and relate items in a database. This metadata becomes
important if one wishes to move information between
domains described by two different databases. Jim Fulton
has called this challenge “Semantic Plug and Play” [4].
This technical community has stressed the importance of
formal data models as key tools.

Perhaps the most informative lessons for designing
image metadata come from the World Wide Web. The
hallmarks of the WWW are flexibility, extensibility, and
distributed development. Tim Berners-Lee has described
the design philosophy of the World Wide Web in a series of
“Design Issues” [5]. We repeat below a few of his key
concepts and connect them to image metadata.

IS&T’s 2000 PICS ConferenceIS&T's 2000 PICS Conference Copyright 2000, IS&T
The principle of least power
There are classes of computer languages that vary in

their ability to express complex structures and behavior.
They range from purely descriptive (e.g., HTML), through
declarative languages such as XML, to procedural
languages such as Java. In selecting the language in which
to define the metadata, choose the language with the least
power that can meet the needs. This may make a current
application that uses the metadata more complex (to make
up for the limitations of the language), but it makes all the
future applications, unknown to the present creators of this
metadata language, simpler and cleaner. It is better to leave
the complexity to a separate, more easily changed layer of
the system. We have followed this advice and chosen
XML, a declarative language, to describe image metadata.

Decentralization
Do not allow a distributed system to depend upon a

central control point or registration authority. This produces
fragile and brittle applications. This principle is expressed
in the requirement for adding new metadata and discovering
previously unknown metadata on the fly.

Test of independent invention
“If someone else had already invented your system,

would theirs work with yours?” Use this simple thought
experiment to assure that your system could be part of an as-
yet unspecified larger system. For example, the metadata
architecture for images should fit easily within an
architecture for a wider class of objects, even if that
architecture has not yet been defined. Our architecture
supports late binding of meaning with syntax, to assure the
flexibility suggested by this principle.

Tolerance
“Be liberal in what you require but conservative in what

you do.” The component that uses image metadata should
be forgiving about variations in the metadata it receives, as
long as it can unambiguously act correctly. This principle
reflects a move away from hardware implementations, for
which liberality means great complexity, to software
implementations of metadata management.

Trust
Each item of metadata makes an assertion about some

aspect of an image. To what degree can the receiver of the
metadata trust this assertion to be true? This aspect of
metadata is particularly important when intelligent agent
software is using the metadata to act in the user’s name.
Our present ability to associate authority and accuracy with
metadata items is still primitive. The architecture described
here includes the notion of delivering “more detail” when
asked, and the ability to encrypt critical metadata.

Metadata Architecture

A metadata architecture must describe two key elements:
the means of expressing a collection of metadata and the
66
functionality required in the software that manages the
metadata. This is shown in the context of an imaging
application in Fig. 1. The application relies on a variety of
“middleware” components, or toolkits, each of which
performs a specific function well. Key imaging components
shown in Fig. 1 are the Image Processing Toolkit, the
Metadata Manager, and an Image Analysis Package. The
Image Processing Toolkit and the Metadata Manager are
responsible for interfacing to the image file, which contains
both pixel data and metadata. Just as modern applications
rely on an Image Processing Toolkit to fetch pixels from the
file and perform elemental image processing operations,
they should expect the Metadata Manager to fetch metadata
by name and perform routine metadata operations. Another
significant component shown in Fig. 1 is the Image Analysis
Package. This is a collection of routines that use Image
Understanding algorithms to derive meaningful metadata
from the pixel values [6].

The representation of the metadata and the functionality
of the Metadata Manager may be organized into three levels
of abstraction: syntax, semantics, and context.

The syntax level addresses the structural representation
of the metadata. For the receiver of the metadata, it answers
the question, “How do I group these bytes or characters into
meaningful components?” Semantics concerns the
conveyance of the meaning of the metadata. It answers
questions like, “What assertion is intended by this sequence
of components?” Context addresses the contextual usage of
the metadata. It is based on domain and experiential
knowledge, and it answers questions like, “Based on these
assertions, what is the appropriate image processing for this
image?” There is a clear dependence between these levels.
The translations of the context level rely on the well-formed
meanings in the semantic layer. The semantic layer, in turn,
relies on the syntax layer for the well-formed
representations.

The ideal image metadata system would allow a device
near the beginning of the image chain to add a new metadata
item to the image and communicate at all three levels with a
device at the end of the image chain. This would enable
new end-to-end features to be introduced into open systems
without end-to-end software revisions. We are not yet able
to describe an architecture that makes this possible.

Image File: Pixels & Metadata

Database ImageRef
/ Metadata

Operating System

Image Processing Metadata Manager

Image Analysis

COM / CORBA

Internet

Application API

Database API

Application UI

Figure 1. Application architecture

IS&T's 2000 PICS ConferenceIS&T's 2000 PICS ConferenceIS&T's 2000 PICS Conference Copyright 2000, IS&T
However, the syntax level forms the foundation upon which
all other functionality will be built. This is also the level
that can be addressed with today’s technology and,
therefore, will be primary topic of the remainder of this
paper. We will touch upon the semantic and context layers
to convey the particular challenges that they pose.

Syntax
The syntax level addresses the representation of the

metadata. One common approach is a loosely organized
collection of tag-value pairs. This is the method used in the
TIFF format [7]. The tag is a numeric value assigned by a
central TIFF tag registration authority. The only attribute of
a value is its type, limited to a specified set of primitive data
types such as byte, ASCII, and short. This syntax fails to
meet many of the requirements stated above and forms a
poor foundation for the powerful layers we would like to
build on top of it.

The World Wide Web Consortium has created a
modern declarative language to express the structure of
WWW documents. This language, XML (eXtensible
Markup Language) [8], has many of the characteristics we
seek for image metadata. This is no surprise, given the
commonality of system requirements. XML is also being
used by others as a means to define common data structures
for passing information between heterogeneous information
systems. In addition, XML fulfills our desire to enable
digital images to participate in resource discovery on the
World Wide Web.

We will not describe the details of XML here. Several
good references are available [9, 10]. Here is an example of
metadata expressed in XML:

<Person>
<FirstName> John </FirstName>

 <LastName> Doe </LastName>
<Birthdate> 1-1-1934 </Birthdate>

</Person>

XML consists largely of nested sets of “elements”,
delimited by angled brackets that identify the nature of the
content they surround.

We propose the direct use of XML text to store
metadata. This will simplify distributed development of
imaging applications and establish a firm foundation for
powerful semantic and contextual capabilities. At first
glance, XML appears to be grossly wasteful of storage
space, compared to binary tag-value pairs. It will take up
somewhat more space (TIFF structures are themselves
rather inefficient), but we have addressed this issue in
several ways. First, the element names are intended to be
human-readable, but some restraint should be used in giving
elements fully expressive names. Second, large binary
structures, such as ICC profiles, will still be stored as binary
blobs. Third, standard data compression methods can be
used to compress the text if metadata size becomes an issue.

The XML language supports flexible grouping of
metadata. This capability should be used to organize related
467
metadata items in order of importance. For example, the top
level of geographic location information might be latitude
and longitude. Beneath that, data might be available on the
source of the information (GPS, cell phone network), further
details (satellite id), and its reliability. Of course, any
organizational choices at this level impose current opinions
of “importance” on the data structures. However, no data is
lost in this process, only hidden.

One important capability of the XML language is
validation. It is possible to encapsulate the syntax allowed
for all image metadata into a compact “Document Type
Declaration”, or DTD. The DTD is not required to
understand the metadata, but an XML parser can
unambiguously validate any example of metadata against
the DTD. This clearly improves the accuracy of
communication between sender and receiver.

As presently defined, XML does not meet all of our
requirements for image metadata. It is able to validate the
form of a metadata example, but not its content. As a
simple example, there is no means to check that a numerical
month falls between one and twelve. The World Wide Web
Consortium (W3C) recognized this shortfall and launched
the XML Schema Working Group in early 1999 to define a
full-featured declarative language based on XML [11]. At
the time of this writing, XML Schema is still a W3C
Working Draft, but it appears to contain the capabilities we
seek for image metadata. For example, it permits the
definition of the type “date” with a specific substructure and
permitted values.

Semantics
The meaning of the metadata is not always obvious

from its syntax. The human-readable names in XML help,
particularly if a human is present to read it. For example,
XML Stylesheets [12], already supported by some browsers,
can be used to present metadata to a user with no custom
programming.

Software applications or agents have harder task. There
is substantial debate in the broader metadata community
over the ability of the basic XML syntax to communicate
meaning. An alternative language, “Resource Description
Framework”, or RDF, has been proposed [13]. RDF is
defined in terms of XML syntax, but has the additional
capability to express relationships as directed labeled
graphs. For example, we may wish to communicate, “In
this picture, John is standing behind Mary.” There is no
natural way to express this in the basic XML syntax so that
the meaning is unambiguous. RDF is designed for this type
of assertion. Our own studies indicate that XML will
suffice for metadata that is closely associated with a single
image and describes that entire image. Metadata about
some sub-element of the image, or metadata that attempts to
express the relationship between two elements may require
the more powerful syntax of RDF.

Context
We have no general solution to the context layer for

metadata today. Each application or software agent must

IS&T's 2000 PICS ConferenceIS&T's 2000 PICS ConferenceIS&T's 2000 PICS Conference Copyright 2000, IS&T
contain explicit code for every action it takes in response to
the metadata in the image. Several of the key challenges
noted above fall into the context layer.

Metadata manager implementation
The realization of this architecture is encompassed in

the Metadata Manager component of Fig. 1. The current
implementation focuses on providing storage format-
independent access to metadata. The syntax level of the
architecture plays a key role in this, providing the common
ground to which all other metadata storage representations
are mapped.

We have developed a generic object-oriented class
model for the in-memory representation of the XML-based
metadata representations. All programmatic-based
manipulation of metadata uses this class model. The XML-
based metadata definitions are parsed to build a class factory
of prototype instances. Applications and other components
of the Metadata Manager use this factory to instantiate valid
metadata instances.

The storage format input/output variations have been
abstracted out to a common class interface, referred to as
Accessors. The Accessors have explicit understanding of
the file format and common metadata representations and,
therefore, are able to perform the mapping between the two
representations. The Accessors’ interface uses the metadata
class model, completely hiding any file format details from
the application. The Accessors also provide special read /
write all metadata methods. These are present to fulfill the
requirement to “copy all metadata”. Presently, the
Accessors support the Exif, TIFF, and APS MOF
(Magnetics On Film) file formats.

Conclusion

We have described the requirements for a general
architecture for creating, storing, and using metadata with
images. The elements of the syntax layer are clearest; the
semantic and context layers are largely open for future
research. The Digital Imaging Group (DIG) working group
on image metadata has recommended to the JPEG2000
working group [14] that the JPEG2000 file format use XML
as the syntax for flexible metadata storage. This same group
has defined the container structures that will be used to
combine image data and metadata into a single file. We
support this choice. As soon as XML Schema becomes a
standard, we expect to enhance the capabilities of
JPEG2000 metadata management with schemas. This will
close some existing weaknesses in the XML standard.

We believe that XML establishes a firm foundation for
capabilities based on semantics and context. Some of these
challenges are common to broader uses of metadata for
bibliography and the World Wide Web. Others are peculiar
to images and will be solved largely within the field of
Imaging Science. In spite of the many problems left to be
solved, the industry is moving forward to implement basic
solutions now, in a manner that provides a good foundation
for future implementations.
568
References

1. The Power of Metadata Is Propelling Digital Imaging Beyond
the Limitations of Conventional Photography, Digital
Imaging Group, http://www.digitalimaging.org/i_dig35_form.html

2. Dublin Core Metadata, http://purl.oclc.org/dc
3. Guidance on expressing the Dublin Core within the Resource

Description Framework, http://www.ukoln.ac.uk/metadata/
resources/dc/datamodel/WD-dc-rdf/

4. Jim Fulton, Semantic plug and play, prepared for the Joint
Workshop on Standards for the Use of Models that Define the
Data and Processes of Information Systems, September, 1996,
Seattle, Wa. Available at
http://www.mel.nist.gov/workshop/jtc1-96/papfultn.htm

5. Tim Berners-Lee, Axioms of Web Architecture, September,
1999, http://www.w3c.org/DesignIssues/Principles.html

6. Gupta, A., Ramesh, J., Visual Information Retrieval,
Communications of the ACM, Vol. 40, No. 5, 1997.

7. TIFF (Tagged Image File Format) Revision 6.0, June, 1992.
The TIFF specification is maintained by Adobe Systems at
http://partners.adobe.com/asn/developer/PDFS/TN/TIFF6.pdf

8. eXtensible Markup Language, http://www.w3.org/XML/
9. Walsh, N., A Technical Introduction to XML,

http://www.xml.com/pub/98/10/guide0.html
10. J. Bosak and T. Bray, XML and the second-generation web,

Scientific American, May 1999
11. XML Schema Structures and Datatypes Working Drafts,

http://www.w3.org/TR/xmlschema-1,
http://www.w3.org/TR/xmlschema-2

12. eXtensible Stylesheet Language (XSL)
http://www.w3.org/Style/XSL/

13. Resource Description Framework http://www.w3.org/RDF/
14. JPEG2000 Working Group, http://www.jpeg.org/public/

jpeglinks.htm

Biography

James R. Milch is Manager and Chief Architect of the
Image Data Systems Program at Eastman Kodak Company.
He is responsible for the integration of Kodak products so
that they deliver end-to-end benefits to customers in an
open-systems environment. His past assignments at Kodak
ranged from conceptual research to the development of
specific products. Dr. Milch earned a B.S. in Physics from
Yale University and a Ph.D. in Physics from Princeton
University.

George E. Sotak Jr. is a Research Associate in the
Image Science Technology Laboratory at Eastman Kodak
Company. He is currently the Project Leader of the
Metadata Manipulation Architecture project in the Image
Data Systems Program. His past assignments at Kodak
include research and development of Visual Information
Management technologies and algorithm and system
development for the application of image processing and
analysis to all disciplines of microscopy. Mr. Sotak earned
a B.S. in Electrical Engineering and Applied Physics from
Case Western Reserve University and a M.S. in Electrical
Engineering from The Ohio State University.

